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Introduction

SIAC filtering is a post-processing technique
designed to increase the smoothness and ex-
tract the hidden “superconvergence” of nu-
merical solutions obtained through a Discon-
tinuous Galerkin (DG) method [1]. It con-
sists of convolving a B-Spline kernel at a par-
ticular point with the DG solution at final
time:

u?(x, T ) = 1
H

∫
K (2k+1,k+1)

H (x)︸ ︷︷ ︸
SIAC kernel

uh(x, T )︸ ︷︷ ︸
DG solution

dx.

Since the DG solution is continuous only in-
side the elements, the error exhibits high fre-
quency oscillations. Applying a SIAC filter,
the oscillations can be removed:

Before Filtering After Filtering

-7

 -5

-3

0 1

|e
rr

o
r|

x
0 1

x

N=20

N=40

N=80

N=160

Figure: ut + ux = 0, u(x , 0) = sin(2πx), T = 12.5

Traditionally, the applications of these filters
in multidimension have employed a tensor
product kernel. However, this structure re-
sults in a filter that grows in support as the
field dimension increases, becoming compu-
tationally expensive. Here, we present Line
SIAC filters: a new and computationally ef-
ficient approach for post-processing multidi-
mensional data by transforming the integral
of the convolution into a line integral.
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Figure: Integration regions for post-processing a
particular point using tensor product and line filters.

This affords great advantages towards the
applications of these filters since the simula-
tion times become significantly shorter and
the complexity of the algorithm design re-
duces to a one-dimensional problem.

Line SIAC Filter

Given a rotation line Γ(t) = t(cos θ, sin θ) + (x , y), θ fixed, the filtering
convolution is defined by:

u?(x , y) = 1
H

∫ ∞
−∞

K (2k+1,k+1)
Γ

( t
H

)
uh(Γ(t))dt.

The kernel is defined in the usual way:

K (2k+1,k+1)(·) =
k∑

γ=−k
cγψ(k+1)(· − γ),
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Figure: B-Splines (left) and two symmetric SIAC kernels (centre and right).

but the B-Splines are defined along the rotation line:

ψ̃
(k+1)
θ (x , y) =

{
ψ(k+1) (Γ−1(x , y)

)
if (x , y) ∈ Γ(t)

0 otherwise.

supp ψ̃(k+1)(x , y)

Γ(t)
t ∈

[
−k+1

2 , k+1
2

]

Theoretical Results

For linear hyperbolic problems and uniform
meshes, we can show that
‖u − K (2k+1,k+1)

Γ,H ? uh‖L2 ≤ Ch2k+1,
where k is the degree of the DG solution [2].

Computational Advantages

Reducing the dimension implies less number of
integration regions. This number matches the
number of quadrature sums. A tensor product
filter requires n2 quadrature sums!.

 

 

 

 

 

 

      
 

 

 

 

 

 

      

Kernel Integrals Quadrature Sums
K ⊗ K KΓ K ⊗ K KΓ

K (3,2) 64 12 4096 12
K (5,3) 196 21 38416 21
K (7,4) 400 30 160000 30

Smoothness Recovery
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Figure: Error contours (log) for the solution to ux + uy = 0, u0(x , y) + sin(x + y), T = 2 over an uniform mesh and using a P1 basis.

Superconvergence and Error Reduction

ux + uy + ut = 0
u0(x , y) = sin(x + 3y)

1.3ux + 0.8uy + ut = 0
u0(x , y) = sin(x) cos(y)

Error contours (log)

Global Analysis

Unfiltered Filtered
N L2-Error Order L2-Error Order

P2

20 3.6-e03 - 5.0e-04 -
40 4.6e-04 2.95 1.4e-05 5.15
80 5.9e-05 2.97 4.1e-07 5.12

P3

20 2.1e-04 - 3.9e-04 -
40 1.3e-05 3.95 8.2e-08 12.19
80 8.5e-07 3.98 3.9e-12 7.72

Unfiltered Filtered
N L2-Error Order L2-Error Order

P2

20 3.4e-04 - 6.7e-05 -
40 1.7e-05 4.33 1.1e-06 5.92
80 2.1e-06 3.00 1.8e-08 5.97

P3

20 2.6e-06 - 8.1e-06 -
40 1.6e-07 4.00 3.4e-08 7.87
80 1.0e-08 4.00 1.4e-10 7.97

Applications to Streamline Visualisation
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Conclusions

Line filtering preserves the properties of traditional tensor product filtering, including smoothness
recovery and improvement in the convergence rate. Furthermore, the numerical results suggest
that the filtered solution has lower error than the original one. Using this lower dimension approach,
SIAC filtering becomes a computationally efficient technique for multidimensional data, allowing
for applications to flow visualisation by improving the quality of the underlying field.
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